4,957 research outputs found

    Valley contrasting physics in graphene: magnetic moment and topological transport

    Full text link
    We investigate physical properties that can be used to distinguish the valley degree of freedom in systems where inversion symmetry is broken, using graphene systems as examples. We show that the pseudospin associated with the valley index of carriers has an intrinsic magnetic moment, in close analogy with the Bohr magneton for the electron spin. There is also a valley dependent Berry phase effect that can result in a valley contrasting Hall transport, with carriers in different valleys turning into opposite directions transverse to an in-plane electric field. These effects can be used to generate and detect valley polarization by magnetic and electric means, forming the basis for the so-called valley-tronics applications

    Berry Phase Effects on Electronic Properties

    Get PDF
    Ever since its discovery, the Berry phase has permeated through all branches of physics. Over the last three decades, it was gradually realized that the Berry phase of the electronic wave function can have a profound effect on material properties and is responsible for a spectrum of phenomena, such as ferroelectricity, orbital magnetism, various (quantum/anomalous/spin) Hall effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this review. We start with a brief summary of necessary background, followed by a detailed discussion of the Berry phase effect in a variety of solid state applications. A common thread of the review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of electromagnetic fields and more general perturbations. Finally, we demonstrate a re-quantization method that converts a semiclassical theory to an effective quantum theory. It is clear that the Berry phase should be added as a basic ingredient to our understanding of basic material properties.Comment: 48 pages, 16 figures, submitted to RM

    Expectile Matrix Factorization for Skewed Data Analysis

    Full text link
    Matrix factorization is a popular approach to solving matrix estimation problems based on partial observations. Existing matrix factorization is based on least squares and aims to yield a low-rank matrix to interpret the conditional sample means given the observations. However, in many real applications with skewed and extreme data, least squares cannot explain their central tendency or tail distributions, yielding undesired estimates. In this paper, we propose \emph{expectile matrix factorization} by introducing asymmetric least squares, a key concept in expectile regression analysis, into the matrix factorization framework. We propose an efficient algorithm to solve the new problem based on alternating minimization and quadratic programming. We prove that our algorithm converges to a global optimum and exactly recovers the true underlying low-rank matrices when noise is zero. For synthetic data with skewed noise and a real-world dataset containing web service response times, the proposed scheme achieves lower recovery errors than the existing matrix factorization method based on least squares in a wide range of settings.Comment: 8 page main text with 5 page supplementary documents, published in AAAI 201

    Minimal field requirement in precessional magnetization switching

    Full text link
    We investigate the minimal field strength in precessional magnetization switching using the Landau-Lifshitz-Gilbert equation in under-critically damped systems. It is shown that precessional switching occurs when localized trajectories in phase space become unlocalized upon application of field pulses. By studying the evolution of the phase space, we obtain the analytical expression of the critical switching field in the limit of small damping for a magnetic object with biaxial anisotropy. We also calculate the switching times for the zero damping situation. We show that applying field along the medium axis is good for both small field and fast switching times.Comment: 6 pages, 7 figure

    Topological Classification of Crystalline Insulators with Point Group Symmetry

    Full text link
    We show that in crystalline insulators point group symmetry alone gives rise to a topological classification based on the quantization of electric polarization. Using C3 rotational symmetry as an example, we first prove that the polarization is quantized and can only take three inequivalent values. Therefore, a Z3 topological classification exists. A concrete tight-binding model is derived to demonstrate the Z3 topological phase transition. Using first-principles calculations, we identify graphene on BN substrate as a possible candidate to realize the Z3 topological states. To complete our analysis we extend the classification of band structures to all 17 two-dimensional space groups. This work will contribute to a complete theory of symmetry conserved topological phases and also elucidate topological properties of graphene like systems

    Quantum Theory of Orbital Magnetization and its Generalization to Interacting Systems

    Get PDF
    Based on standard perturbation theory, we present a full quantum derivation of the formula for the orbital magnetization in periodic systems. The derivation is generally valid for insulators with or without a Chern number, for metals at zero or finite temperatures, and at weak as well as strong magnetic fields. The formula is shown to be valid in the presence of electron-electron interaction, provided the one-electron energies and wave functions are calculated self-consistently within the framework of the exact current and spin density functional theory.Comment: Accepted by Phys. Rev. Let
    • …
    corecore